A novel strontium-loaded silk fibroin nanofibrous membrane for guided bone regeneration: in vitro and in vivo studies

نویسندگان

  • Shijun Lu
  • Ming Shen
  • Feng Zhang
  • Peng Wang
  • Baoqi Zuo
  • Xichao Zhou
  • Xinran You
  • Zhendong Wang
  • Hongchen Liu
چکیده

The silk fibroin (SF) nanofibrous membrane is a good candidate for clinical application in bone and periodontal regenerative therapy. Strontium (Sr), as a natural element in human bone, can hinder osteoclast activity and promote bone formation. This study aims to evaluate in vitro and in vivo the feasibility of strontium-loaded silk fibroin nanofibrous membrane (Sr-SFM) for guided bone regeneration (GBR). The Sr-SFM was fabricated by electrospinning, and the structure characteristics and strontium ion release pattern were analyzed. To examine the biocompatibility of Sr-SFM, we investigated cell morphology, proliferation and differentiation. The GBR efficacy of Sr-SFM was evaluated in rat calvarial defects. The Sr-SFM exhibited uniform nanofibrous structure and a sustained release of strontium over a 14-day period. In vitro tests, the cell numbers and ALP activities of rBMSCs cultured in Sr-SFMs were significantly higher than that in pure SFM. In vivo test at 6 weeks, both micro-CT and histological analyses showed that the Sr-SFM group got significantly greater bone formation than pure SFM or uncovered groups. In conclusion, the Sr-SFMs developed in this study showed long-term release of Sr2+, improved cell proliferation and osteogenic differentiation of hMSCs in vitro, and increased new bone formation in vivo, strongly suggesting their potential application towards GBR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...

متن کامل

Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different a...

متن کامل

Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

BACKGROUND Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the su...

متن کامل

Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds

Incorporation of nanohydroxyapatite (nHAP) within a chitosan (CS)/silk fibroin (SF) nanofibrous membrane scaffold (NMS) may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by...

متن کامل

In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds

Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016